Product Code Database
Example Keywords: sweater -retro $15
   » » Wiki: Brush Discharge
Tag Wiki 'Brush Discharge'.
Tag

Brush discharge
 (

A brush discharge is an electrical disruptive discharge similar to a that takes place at an with a high applied to it, embedded in a nonconducting fluid, usually air. It is characterized by numerous luminous writhing sparks, plasma streamers composed of air molecules, which repeatedly strike out from the electrode into the air, often with a crackling sound.

(2025). 9780849371882, . .
(2025). 9780470935392, John Wiley. .
The streamers spread out in a fan shape, giving it the appearance of a "brush".

Corona and brush discharges are sometimes called one-electrode discharges because they occur in the vicinity of a single electrode, and don't extend as far as the electrode carrying opposite polarity voltage in the circuit, as an (a two-electrode discharge) does.

  • Corona discharge — occurs at sharp points and edges (radius < 1 mm). It is a uniform ionization () visible as a dim stationary blue glow, fading out as it extends from the conductor.
  • Brush discharge — occurs at a curved electrode (radius between 5 and 50 mm)
    (2005). 9780849371882, CRC Press. .
    in the vicinity of a flat electrode. It consists of a short ionization channel which breaks up into a fan of multiple moving streamers which strike toward the other electrode. If the electrode is too sharp, a corona discharge will usually occur instead of a brush discharge.
  • Arc or spark discharge — A "two electrode" discharge that occurs when an ionized channel extends all the way from one electrode to the other.
    (2002). 9781560320692, CRC Press. .
    This allows a large current to flow, releasing a large amount of energy.

Both brush and corona discharges represent local regions next to conductors where due to the high voltage the air has undergone electrical breakdown: it has and become conductive, allowing current to leak into the air. They occur when the at the conductor exceeds the dielectric strength of the air, the "disruptive potential gradient", roughly 30 kilovolts per centimeter. At that voltage, in the air are accelerated by the electric field to a high enough velocity that they knock other electrons off gas molecules when they hit them, creating and additional electrons, which go on to ionize additional molecules in a chain reaction. The electric field is highest at sharp points on the conductor, so discharges tend to form at these points. Because the electric field decreases as the distance from the conductor increases, it eventually drops below the value needed for ionization, so corona and brush discharges have a limited extent and are localized near the conductor.

Occurring in very equipment like power transmission lines, radio transmitters and their antennas, CRT power supplies, and power supplies for scientific equipment like and particle accelerators, a brush discharge represents a serious failure of electrical insulation, and may be a fire hazard. Like other , brush discharges produce gas, which can be noxious to nearby people in an enclosed space and over time can cause embrittlement of some plastics. producing brush discharges and streamer discharges are displayed for entertainment at and rock concerts.

The ability of an electrical discharge to cause an explosion in flammable atmospheres is measured by the effective energy of the discharge. The effective energy of brush discharges is 10-20 mJ, much larger than that of corona discharges 0.1 mJ. Therefore, brush discharges are considered an explosion hazard, while corona discharges are not. Brush discharges can occur from charged insulating plastics (for example ) to a conductor.


See also


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs